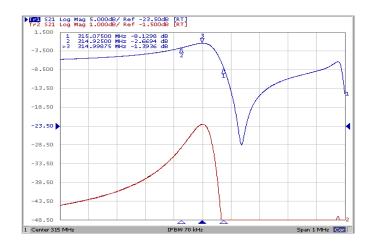


1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.

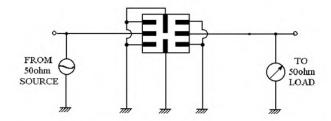

2. ELECTRICAL SPECIFICATION

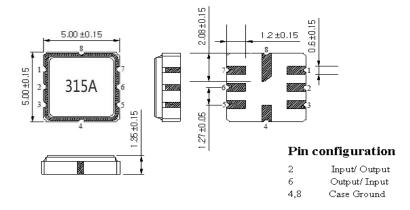
2.1 Maximum Rating

DC Voltage VDC	10V		
AC Voltage Vpp	10V 50Hz/60Hz		
Operation temperature	-40°C to + 85°C		
Storage temperature	-45°C to +85°C		
Max Input Power	10 dBm		

2.2 Electronic Characteristics

Item		Unites	Minimum	Typical	Maximum
Center Frequency		MHz	314.925	315.000	315.075
Insertion Loss		dB		1.5	2.2
Quality Factor Unload Q			8000	12800	
50 Ω Loaded Q			850	2000	
Temperature Stability	Turnover Temperature	°C	10	25	40
	Freq.temp.Coefficient	ppm/°C ²		0.037	
Frequency Aging		ppm/yr		≪10	
DC. Insulation Resistance		MΩ	1.0		
RF Equivalent RLC Model	Motional Resistance R1	Ω		17	26
	Motional Inductance L1	μН		109.28	
	Motional Capacitance C1	fF		2.3357	
Transducer Static Capacitance		pF		2.7	





3. TEST CIRCUIT

4. DIMENSION

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to $+85^{\circ}$ C for 16 hours. Then release the filter into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2-2.

5-2 Low temperature exposure

Subject the device to -40°C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2-2.

5-3 Temperature cycling

Subject the device to a low temperature of -40°C for 30 minutes. Following by a high temperature of +85°C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2-2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$ for $10 \pm 1 \,\text{sec}$. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2-2.

5-5 Solderability

Subject the device terminals into the solder bath at $245^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5s. More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2-2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of Im 3 times. the device shall fulfill the specifications in 2-2.

5-7 Vibration

Subject the device to the vibration for I hour each in x, y and z axes with the the amplitude of 1.5 mm at 10 to 55Hz. The device shall fulfill the specifications in 2-2.

6. REMARK

6.1 Static voltage

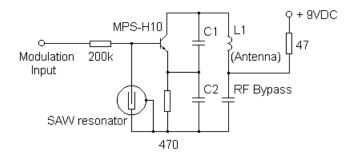
Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

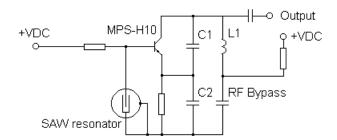
6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.





7. TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

